3.57 \(\int \sqrt {d-c^2 d x^2} (a+b \sin ^{-1}(c x)) \, dx\)

Optimal. Leaf size=116 \[ \frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}} \]

[Out]

1/2*x*(-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x))-1/4*b*c*x^2*(-c^2*d*x^2+d)^(1/2)/(-c^2*x^2+1)^(1/2)+1/4*(a+b*arcs
in(c*x))^2*(-c^2*d*x^2+d)^(1/2)/b/c/(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.05, antiderivative size = 116, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 24, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.125, Rules used = {4647, 4641, 30} \[ \frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Int[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

-(b*c*x^2*Sqrt[d - c^2*d*x^2])/(4*Sqrt[1 - c^2*x^2]) + (x*Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]))/2 + (Sqrt[d
 - c^2*d*x^2]*(a + b*ArcSin[c*x])^2)/(4*b*c*Sqrt[1 - c^2*x^2])

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 4641

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)/Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(a + b*ArcSin[c*x])^
(n + 1)/(b*c*Sqrt[d]*(n + 1)), x] /; FreeQ[{a, b, c, d, e, n}, x] && EqQ[c^2*d + e, 0] && GtQ[d, 0] && NeQ[n,
-1]

Rule 4647

Int[((a_.) + ArcSin[(c_.)*(x_)]*(b_.))^(n_.)*Sqrt[(d_) + (e_.)*(x_)^2], x_Symbol] :> Simp[(x*Sqrt[d + e*x^2]*(
a + b*ArcSin[c*x])^n)/2, x] + (Dist[Sqrt[d + e*x^2]/(2*Sqrt[1 - c^2*x^2]), Int[(a + b*ArcSin[c*x])^n/Sqrt[1 -
c^2*x^2], x], x] - Dist[(b*c*n*Sqrt[d + e*x^2])/(2*Sqrt[1 - c^2*x^2]), Int[x*(a + b*ArcSin[c*x])^(n - 1), x],
x]) /; FreeQ[{a, b, c, d, e}, x] && EqQ[c^2*d + e, 0] && GtQ[n, 0]

Rubi steps

\begin {align*} \int \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right ) \, dx &=\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \int \frac {a+b \sin ^{-1}(c x)}{\sqrt {1-c^2 x^2}} \, dx}{2 \sqrt {1-c^2 x^2}}-\frac {\left (b c \sqrt {d-c^2 d x^2}\right ) \int x \, dx}{2 \sqrt {1-c^2 x^2}}\\ &=-\frac {b c x^2 \sqrt {d-c^2 d x^2}}{4 \sqrt {1-c^2 x^2}}+\frac {1}{2} x \sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )+\frac {\sqrt {d-c^2 d x^2} \left (a+b \sin ^{-1}(c x)\right )^2}{4 b c \sqrt {1-c^2 x^2}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 111, normalized size = 0.96 \[ \frac {\sqrt {d-c^2 d x^2} \left (a^2+2 a b c x \sqrt {1-c^2 x^2}+2 b \sin ^{-1}(c x) \left (a+b c x \sqrt {1-c^2 x^2}\right )-b^2 c^2 x^2+b^2 \sin ^{-1}(c x)^2\right )}{4 b c \sqrt {1-c^2 x^2}} \]

Antiderivative was successfully verified.

[In]

Integrate[Sqrt[d - c^2*d*x^2]*(a + b*ArcSin[c*x]),x]

[Out]

(Sqrt[d - c^2*d*x^2]*(a^2 - b^2*c^2*x^2 + 2*a*b*c*x*Sqrt[1 - c^2*x^2] + 2*b*(a + b*c*x*Sqrt[1 - c^2*x^2])*ArcS
in[c*x] + b^2*ArcSin[c*x]^2))/(4*b*c*Sqrt[1 - c^2*x^2])

________________________________________________________________________________________

fricas [F]  time = 0.41, size = 0, normalized size = 0.00 \[ {\rm integral}\left (\sqrt {-c^{2} d x^{2} + d} {\left (b \arcsin \left (c x\right ) + a\right )}, x\right ) \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="fricas")

[Out]

integral(sqrt(-c^2*d*x^2 + d)*(b*arcsin(c*x) + a), x)

________________________________________________________________________________________

giac [F(-2)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Exception raised: TypeError} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,x):;OUTPUT:sym2
poly/r2sym(const gen & e,const index_m & i,const vecteur & l) Error: Bad Argument Value

________________________________________________________________________________________

maple [B]  time = 0.14, size = 260, normalized size = 2.24 \[ \frac {a x \sqrt {-c^{2} d \,x^{2}+d}}{2}+\frac {a d \arctan \left (\frac {\sqrt {c^{2} d}\, x}{\sqrt {-c^{2} d \,x^{2}+d}}\right )}{2 \sqrt {c^{2} d}}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}\, \arcsin \left (c x \right )^{2}}{4 c \left (c^{2} x^{2}-1\right )}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c^{2} \arcsin \left (c x \right ) x^{3}}{2 c^{2} x^{2}-2}+\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, c \sqrt {-c^{2} x^{2}+1}\, x^{2}}{4 c^{2} x^{2}-4}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \arcsin \left (c x \right ) x}{2 \left (c^{2} x^{2}-1\right )}-\frac {b \sqrt {-d \left (c^{2} x^{2}-1\right )}\, \sqrt {-c^{2} x^{2}+1}}{8 c \left (c^{2} x^{2}-1\right )} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x)

[Out]

1/2*a*x*(-c^2*d*x^2+d)^(1/2)+1/2*a*d/(c^2*d)^(1/2)*arctan((c^2*d)^(1/2)*x/(-c^2*d*x^2+d)^(1/2))-1/4*b*(-d*(c^2
*x^2-1))^(1/2)*(-c^2*x^2+1)^(1/2)/c/(c^2*x^2-1)*arcsin(c*x)^2+1/2*b*(-d*(c^2*x^2-1))^(1/2)*c^2/(c^2*x^2-1)*arc
sin(c*x)*x^3+1/4*b*(-d*(c^2*x^2-1))^(1/2)*c/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)*x^2-1/2*b*(-d*(c^2*x^2-1))^(1/2)/(c
^2*x^2-1)*arcsin(c*x)*x-1/8*b*(-d*(c^2*x^2-1))^(1/2)/c/(c^2*x^2-1)*(-c^2*x^2+1)^(1/2)

________________________________________________________________________________________

maxima [F]  time = 0.00, size = 0, normalized size = 0.00 \[ b \sqrt {d} \int \sqrt {c x + 1} \sqrt {-c x + 1} \arctan \left (c x, \sqrt {c x + 1} \sqrt {-c x + 1}\right )\,{d x} + \frac {1}{2} \, {\left (\sqrt {-c^{2} d x^{2} + d} x + \frac {\sqrt {d} \arcsin \left (c x\right )}{c}\right )} a \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c^2*d*x^2+d)^(1/2)*(a+b*arcsin(c*x)),x, algorithm="maxima")

[Out]

b*sqrt(d)*integrate(sqrt(c*x + 1)*sqrt(-c*x + 1)*arctan2(c*x, sqrt(c*x + 1)*sqrt(-c*x + 1)), x) + 1/2*(sqrt(-c
^2*d*x^2 + d)*x + sqrt(d)*arcsin(c*x)/c)*a

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.01 \[ \int \left (a+b\,\mathrm {asin}\left (c\,x\right )\right )\,\sqrt {d-c^2\,d\,x^2} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2),x)

[Out]

int((a + b*asin(c*x))*(d - c^2*d*x^2)^(1/2), x)

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \sqrt {- d \left (c x - 1\right ) \left (c x + 1\right )} \left (a + b \operatorname {asin}{\left (c x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-c**2*d*x**2+d)**(1/2)*(a+b*asin(c*x)),x)

[Out]

Integral(sqrt(-d*(c*x - 1)*(c*x + 1))*(a + b*asin(c*x)), x)

________________________________________________________________________________________